Exam Symmetry in Physics

Date February 4, 2011
Room X 5118.-156
Time 9:00-12:00
Lecturer D. Boer

- Write your name and student number on every separate sheet of paper
- You are not allowed to use the lecture notes, nor other notes or books
- All subquestions (a, b, etc) of the three exercises have equal weight
- Answers may be given in Dutch
- Illegible handwriting will be graded as incorrect
- Good luck!

Exercise 1

Consider the dihedral group $D_{3}: \operatorname{gp}\{c, b\}$ with $c^{3}=b^{2}=(b c)^{2}=e$.
(a) Show that the cyclic group C_{3} forms an invariant subgroup of D_{3}.
(b) Show that $D_{3} / C_{3} \cong C_{2}$.
(c) Construct the character tables of C_{2}, C_{3}, and D_{3}.
(d) Show which irreps of C_{2} can be lifted to irreps of D_{3} through $D^{G}(g):=$ $D^{G / N}(g N)$.
(e) Determine the Clebsch-Gordan series of the direct product rep $D^{(3)} \otimes D^{(3)}$ of D_{3}, where $D^{(3)}$ denotes the two-dimensional irrep of D_{3}.

Consider a molecule with D_{3} symmetry. By application of an external magnetic field the symmetry is broken to a C_{3} symmetry.
(f) Decompose the irreps of D_{3} into those of C_{3} using the character tables.
(g) Explain what the implications of the symmetry breaking are for the degeneracy of the energy levels of the molecule.

Exercise 2

(a) Explain what the concept of symmetry means in physics.
(b) Explain the role of representations in physics.
(c) Under which symmetry transformations is the Hamiltonian $H=\vec{p}^{2} / 2 m+$ $V(|\vec{r}|)$ invariant?
(d) Show that $[H, U(g)]=0$ implies that transformed states $U(g) \psi$ are degenerate in energy with the state ψ.
(e) Describe under which representations of $O(3)$ the following quantities transform: 1) an electric field \vec{E}; 2) a magnetic field \vec{B}; 3) $\vec{E} \cdot \vec{B}$; and 4) $\vec{E} \times \vec{B}$.

Exercise 3

Consider the special linear group $S L(2, \mathrm{R})$ of real 2×2 matrices with determinant 1 and its Lie algebra $s l(2, \mathrm{R})$.
(a) Give an explicit representation of the generators $a_{i} \in \operatorname{sl}(2, \mathrm{R})$.
(b) Determine the dimension of $s l(2, \mathrm{R})$.
(c) Determine the center of $S L(2, \mathrm{R})$ (it is allowed to assume the defining rep is an irrep).
(d) Show whether the map ϕ from the general linear group $G L(2, \mathrm{R})$ into $S L(2, \mathrm{R})$, given by $\phi(A)=A / \sqrt{\operatorname{det} A}$, is a homomorphism or not.
(e) To which group is the factor group $G L(2, \mathrm{R}) / S L(2, R)$ isomorphic?
(f) Show whether $S O(2)$ is an invariant subgroup of $S L(2, \mathrm{R})$ or not.

